On the Variety of Lagrangian Subalgebras, Ii
نویسنده
چکیده
منابع مشابه
On the variety of Lagrangian subalgebras
We study Lagrangian subalgebras of a semisimple Lie algebra with respect to the imaginary part of the Killing form. We show that the variety L of Lagrangian subalgebras carries a natural Poisson structure Π. We determine the irreducible components of L, and we show that each irreducible component is a smooth fiber bundle over a generalized flag variety, and that the fiber is the product of the ...
متن کاملتحلیل دینامیکی سدهای بتنی وزنی با مدلسازی مخزن به روشهای لاگرانژی و اویلری
Because of different behavior of reservoir water and dam material, the determination of hydrodynamic pressure during earthquake is very complicated. Thus, different formulations have been presented for modeling of the dam reservoir system under dynamic loading such as earthquake. These formulations can be categorized into two general groups, which are Lagrangian and Eulerian, each having advant...
متن کامل. Q A ] 2 8 Fe b 20 06 ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS , II
VERSION FRANÇ AISE: Motivé par le théorème de Drinfeld sur les espaces de Poisson homogènes, nousétudions la variété L des sous-algèbres de Lie Lagrangiennes de g ⊕ g pour g, une algèbre de Lie complexe semisimple. Soit G le groupe adjointe de g. Nous montrons que les adhérences des (G × G)-orbites dans L sont les variétés sphériques et lisses. Aussi, nous classifions les composantes irréductib...
متن کاملFUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004